Mapping FRSAD Model and Other Abstract Models

[FRSAR = Functional Requirements for Subject Authority Records]

Marcia Zeng, Kent State University, USA
Maja Žumer, University of Ljubljana, Slovenia
Based on the work of the IFLA FRSAR Working Group

Outline

1. Introducing the FRSAD model
2. Mapping to other models (BS 8723, SKOS, OWL, DCMI-AM)

(Note: only selected slides will be talked in the 30 minutes presentation.)
1. Introducing the FRSAD model

FRSAD = Functional Requirements for Subject Authority Data
FRBR

- Functional Requirements for Bibliographic Records (FRBR)
 - Approved by IFLA in 1997
 - Published in 1998
 - Conceptual model of the ‘bibliographic universe’

http://www.ifla.org/publications/functional-requirements-for-bibliographic-records
FRBR’ three groups of entities
The “FRBR family”

- **FRBR**: the original framework
 - All entities, focusing on Group 1 entities

- **FRAR (FRAD)**: Functional Requirements for Authority Records/Data
 - Focusing on Group 2 entities
 - Just published yesterday (June 22, 2009)

- **FRSAR**: Functional Requirements for Subject Authority Records/Data
 - Focusing on Group 3 entities
 - Established April 2005
 - Draft Report is released for commend today (June 23, 2009)
 - http://nkos.slis.kent.edu/FRSAR/
FRSAR Working Group

FRSAR = Functional Requirements for Subject Authority Records

- Terms of Reference
 - to build a conceptual model of Group 3 entities within the FRBR framework as they relate to the *aboutness* of works,
 - to provide a clearly defined, structured frame of reference for relating the data that are recorded in subject authority records to the needs of the users of those records, and
 - to assist in an assessment of the potential for international sharing and use of subject authority data both within the library sector and beyond.
FRSAD’s relation to FRBR
FRSAD Conceptual Model

work has as subject is subject of thema has appellation is appellation of nomen
This model confirms one of the basic relationships defined in FRBR:

\[\text{WORK has as subject THEM}A / THEM}A \text{ is subject of WORK}. \]

- \textit{Thema} = "any FRBR entity as used as a subject of a work".
- \textit{Thema} includes any of the FRBR entities:
 Group 1 and Group 2 entities and, in addition, all other subjects of works.
Part 2:

THEMA has appellation **NOMEN** / **NOMEN** is appellation of **THEMA**.

This model also proposes a new relationship: **THEMA** has appellation **NOMEN** / **NOMEN** is appellation of **THEMA**.

- **NOMEN** = any sign or sequence of signs (alphanumeric characters, symbols, sound, etc.) by which a *thema* is known, referred to or addressed.
Part 2b
Note: in a given controlled vocabulary and within a domain, a *nomen* should be an appellation of only one *thema*,

![Diagram showing the relationship between 'thema' and 'nomen' with annotations.](image)
NOMEN = any sign or sequence of signs (alphanumeric characters, symbols, sound, etc.) by which a *thema* is known, referred to or addressed.

Example: various nomens for the same thema

<table>
<thead>
<tr>
<th>Accession Number (AN)</th>
<th>2005:3738</th>
<th>USAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Year (PY)</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Generic Name (CN)</td>
<td>Flindoxalner</td>
<td></td>
</tr>
<tr>
<td>OTHER NAMES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Name (CN)</td>
<td>2H-Indol-2-one, 3-(5-chloro-2-methoxyphenyl)-3-fluoro-1,3-dihydro-6-(trifluoromethyl)-, (3S)-</td>
<td></td>
</tr>
<tr>
<td>Chemical Name (CN)</td>
<td>(3R)-3-(5-Chloro-2-methoxyphenyl)-3-fluoro-6-(trifluoromethyl)-1,3-dihydro-2H-indol-2-one</td>
<td></td>
</tr>
<tr>
<td>Trade Name (CN)</td>
<td>MaxiPost (Bristol-Myers Squibb)</td>
<td></td>
</tr>
<tr>
<td>Code Designation (CN)</td>
<td>BMS-204352</td>
<td></td>
</tr>
<tr>
<td>CAS Registry No. (RN)</td>
<td>187523-35-9</td>
<td></td>
</tr>
<tr>
<td>Molecular Formula (MF)</td>
<td>C16 H10 Cl F4 N O2</td>
<td></td>
</tr>
<tr>
<td>Lin. Str. Formula (LSF)</td>
<td>C16 H10 Cl F4 N O2</td>
<td></td>
</tr>
<tr>
<td>Molecular Weight (MW)</td>
<td>355.71</td>
<td></td>
</tr>
</tbody>
</table>

Absolute stereochemistry. Rotation (+).

Source: STN Database Summary Sheet: USAN (The USP Dictionary of U.S. Adopted Names and International Drug Names)
Choice of terms (thema, nomen)

- Different and overlapping meaning of ‘subject’, ‘topic’, ‘concept’, ‘class’, etc.
- Different views on granularity
- ‘Name’ understood as ‘proper name’

Therefore:
- Terms from Latin that do not have to be translated and are not loaded with other meanings
General relationships between \textit{thema} (applicable to all types)

- Hierarchical
 - Partitive
 - Generic
 - Instance
- Associative

Other \textit{thema}-to-\textit{thema} relationships are implementation-dependent
Example: An online display record of the AAT concept “Mercury”

ID: 300011026

Record Type: concept

 mercury (<mercury and amalgam>, nonferrous metal, ... Materials)

Note: Pure metallic element having symbol Hg and atomic number 80. Liquid at ordinary temperatures. Use also for this metal as powder mixed in a combination with other substances, to make various objects and objects.

Terms:
- mercury (preferred, C,D,U,LC,English-P)
- Hg (C,UF,UA,English)
- quicksilver (C,UF,U,English)
- argento vivo (C,D,U,Italian-P)

Facet/Hierarchy Code: M.MT

Hierarchical Position:
- Materials Facet
 - ... Materials
 - materials
 - <materials by composition>
 - inorganic material
 - <metal and metal products>
 - metal
 - <metal by composition or origin>
 - nonferrous metal
 - <mercury and amalgam>
 - mercury

Additional Parents:
- Materials Facet
 - ... Materials
 - materials
 - <materials by form>
 - <materials by chemical form>
 - elements (chemical substances)
 - mercury

Source: Art and Architecture Thesaurus Online
Example: From WebDewey, a record for classes related to "Mercury" (element)

Class Number: 546.663
Segmented Number: 546/.663
Caption: *Mercury*

- **Main Classes**
 - 500 *Science*
 - 540 *Chemistry*
 - 541-547 *Chemistry*
 - 546 *Inorganic chemistry*
 - 546.6 *Groups 8, 9, 10, 11, 12, 13, 14*
 - 546.66 *Group 12*
 - 546.663 *Mercury*
 - 546.6635 *Mercury (Element)"

Diagram:

```
546.663 @ ddc
   has nomen
   has super class
   "546 Inorganic Chemistry"

'Mercury' @ en
   has caption

546.66 @ ddc
   has nomen
   has super class
   "Group 12"

'Mercury' @ en
   has caption
```
Example: An online display record of the LCSH Concept “Mercury” and associated LC Classification classes

<table>
<thead>
<tr>
<th>Authority File: Mercury</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARN 2015071</td>
</tr>
<tr>
<td>Rec stat c</td>
</tr>
<tr>
<td>Entered 19660211</td>
</tr>
<tr>
<td>Replaced 1990022111 12154.6</td>
</tr>
<tr>
<td>Type z</td>
</tr>
<tr>
<td>Upd status a</td>
</tr>
<tr>
<td>Enc lvl n</td>
</tr>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Roman</td>
</tr>
<tr>
<td>Ref status a</td>
</tr>
<tr>
<td>Mod rec</td>
</tr>
<tr>
<td>Name use b</td>
</tr>
<tr>
<td>Govt agn</td>
</tr>
<tr>
<td>Auth status a</td>
</tr>
<tr>
<td>Subj a</td>
</tr>
<tr>
<td>Subj use a</td>
</tr>
<tr>
<td>Series n</td>
</tr>
<tr>
<td>Auth/ref a</td>
</tr>
<tr>
<td>Geo subd i</td>
</tr>
<tr>
<td>Ser use b</td>
</tr>
<tr>
<td>Ser num n</td>
</tr>
<tr>
<td>Name n</td>
</tr>
<tr>
<td>Subdiv tp n</td>
</tr>
<tr>
<td>Rules n</td>
</tr>
</tbody>
</table>

010 sh 85083794
040 DLC 2h eng 4c DLC 2d DLC
053 QD181.H6 4c Chemistry
053 TA480.M4 4c Engineering materials
053 TN271.M4 4c Prospecting
053 TP245.M5 4c Chemical technology
150 Mercury
450 Hydrargyrum
450 Quicksilver
550 Liquid metals 4w g

Diagram:

"Mercury"@LCSH
 has nomen
 has semantic relation (see also)

"Liquid metals"@LCSH
 has nomen

Diagram:

'Mercury'@lcsh
 has nomen
 is associated with class

'TP245.M5'@lcc
 has nomen
 has nomen

'TN271.M4'@lcc
 has nomen
 has nomen

'TA480.M4'@lcc
 has nomen
 has nomen

'QD181.H6'@lcc
 has nomen
 has nomen

Diagram:

= thema
= relation
Nomen-to-nomen relationships
(include but not limited to)

- Partitive
- Equivalence

Equivalence can be specified further, e.g.:
- replaces/is replaced by
- has variant form/is variant form
- has derivation/is derived from
 - has acronym/is acronym for
 - has abbreviation/is abbreviation of
 - has transliterated form/is transliteration of
The importance of the THEMANNOMEN model to the subject authority data

- to separate what are usually called concepts (or topics, subjects, concepts, classes [of concepts]) from what they are known by, referred to, or addressed.
2. Mapping to Other Models
2.1 Ogden & Richard's (1923) triangle of meaning

- the referent of an expression (a word or another sign or symbol) is relative to different language users.
- multiple terms may refer to the same object or idea,
- a single term may refer ambiguously to more than one object or idea,
- terms may be confusing because they are out of date

- It includes what is needed for modeling:
 - (1) a whole thesaurus,
 - (2) arrays of thesaurus concepts, and
 - (3) records that document a thesaurus entry.
- In the model, each concept in a structured vocabulary (especially in a thesaurus) is represented by one preferred term per language, and by any number of nonpreferred terms. The notation, scope note and broader/narrower/related term relationships apply to the concept as a whole, rather than to its preferred term.
FRSAD and BS8723-5 Model

• Both represent these relationships:
 • (1) *thema*-and-*nomen* (a record documenting a concept and its *nomen*(s),
 • (2) *thema*-and-*thema* (hierarchical (broader, narrower, and top concepts)) and associative (related concepts),
 and
 • (3) *nomen*-and-*nomen* (preferred and non-preferred, variant lexical forms, and in various languages).
2.3 SKOS (Simple Knowledge Organization System)

-- provides a model for expressing the basic structure and content of concept schemes such as

- Thesauri
- Classification Schemes
- Taxonomies
- Subject Heading lists
- Folksonomies, and
- other similar types of controlled vocabulary.

-- is an application of RDF

-- allows concepts to be

- composed
- published on the Web
- linked with data on the Web and
- integrated into other concept schemes.

--SKOS Reference, http://www.w3.org/TR/skos-reference/
SKOS for a thesaurus entry

[concept]
- Preferred label
- Alternative label
- Broader concept
- Narrower concept
- Related concept
- Scope note on concept

© zeng, 2008-2009
Using SKOS,

- **concepts** can be identified using URIs
- **labeled** with lexical strings in one or more natural languages, assigned **notations** (lexical codes)
- **documented** with various types of note
- **linked** to other concepts

and

organized into informal hierarchies and association networks

(to be continued →)

© zeng, 2008-2009
(continued from previous slide,
-- concepts are organized into informal hierarchies and association networks)

• aggregated into concept schemes,
 • [grouped into labeled and/or ordered collections,]

• and \textbf{mapped} to concepts in other schemes.
SKOS and FRSAD models

- SKOS model is based on a concept-centric view of vocabulary, where primitive objects are not labels; rather, they are concepts represented by labels.
- These can be matched to what have been defined in the FRSAD model, in terms of *thema*, *nomen* and their attributes.
- SKOS also has specific properties to represent all the semantic relationships, which matches the ones defined by FRSAD as well.
2.4 OWL Web Ontology Language

- standard ontology languages
- endorsed by the W3C to promote the *Semantic Web* vision.

At least two different user groups
- OWL used as data exchange language (define interfaces of services and agents)
- OWL used for terminologies or knowledge models
OWL Classes

OWL is an ontology language that is primarily designed to describe and define classes. Classes are therefore the basic building blocks of an OWL ontology.

OWL provides axioms (statements that say what is true in the domain) that allow relationships to be established between class expressions, including:

- SubClassOf,
- EquivalentClasses,
- DisjointClasses, and
- DisjointUnion.
In OWL, classes and property expressions are used to construct class expressions, (sometimes also called descriptions, and, in the description logic literature, complex concepts).

- ObjectIntersectionOf,
- ObjectUnionOf, and
- ObjectComplementOf

- ObjectOneOf -- contains exactly the specified individuals
Class Relationships

- Inheritance
- Disjoint
- Equivalent
OWL and FRSAD

- For the issues of the complexity and granularity of themas and comprehensive semantic relationships between and among themas that FRSAD attempted to cover, OWL has great matches.
2.5 DCMI Abstract Model

- Formal modeling basis for Dublin Core metadata
- Like a “grammar” for Dublin Core
- Strong link with parallel development of RDF (Resource Description Framework)
The constructs of a record

Described resource
Property = type of relationship
Value = other resource

Description *

Resource URI

Statement *

Property URI

Non-literal Value Surrogate

Value URI

Description reference

Vocabulary Encoding Scheme URI

Value String *

String

Language or

SES URI

SES = Syntax Encoding Scheme
* = repeatable

Source: Nilsson, 2007: slide 12
DCMI-AM and FRSAD

- The FRSAD model corresponds to the DCMI Abstract Model by allowing any *thema* to be independent of any nomen, including any syntax that a *nomen* may use.

- Thus this conceptual model will facilitate the sharing and reuse of subject authority data amongst not only the subject vocabularies themselves, but also metadata resources.
Conclusion

- The FRSAD model is developed with the goal to assist in an assessment of the potential for international sharing and use of subject authority data both within the library sector and beyond.
- The FRSAD model will:
 - enable the consideration of the functions of subject authority data and concept schemes at a higher level that is independent of any implementation, system, or specific context, and
 - allow us to focus on the semantics, structures, and interoperability of subject authority data.
Draft Report available at:

- FRSAR: Functional Requirements for Subject Authority Data (FRSAD)
 - http://nkos.slis.kent.edu/FRSAR/
Acknowledgement

- This paper is based on the work of the FRSAR Working Group and suggestions from the Advisory Group, established by the IFLA Division IV. Bibliographic Control and especially the Section of Classification and Indexing.
- FRSAR Advisory Group members: Victoria Francu, Hemalata Iyer, Dorothy McGarry, David Miller, Päivi Pekkarinen, and Barbara Tillett.
- The communication and sharing with the FRANAR Working Group chaired by Glenn Patton.
- IFLA, OCLC, and Kent State University have provided funding, facilities, and tremendous support.
References

- Dublin Core Metadata Initiatives (DCMI) http://dublincore.org/
- SKOS Reference (2009). W3C Candidate Recommendation 17 March 2009. Available at: